DB视讯(中国)学术报告第24期-数据科学与商业智能联合DB视讯(中国)

DB视讯(中国)

您当前的位置: 首 页 > 学术活动 > 学术报告 > 正文

DB视讯(中国)学术报告第24期

题目:Change-point analysis for modern data

主讲人:加州大学戴维斯分校 陈豪副教授

主持人:西南财经大学统计学院 常晋源教授

时间:2020612日(星期五)10:30-11:50

直播平台及会议ID:腾讯会议,744 746 640


报告摘要:

After observing snapshots of a network, can we tell if there has been a change in dynamics? After collecting spiking activities of thousands of neurons in the brain, how shall we extract meaningful information from the recording?  We introduce a change-point analysis framework utilizing graphs representing the similarity among observations.  This approach is non-parametric and can be applied to data when an informative similarity measure can be defined.  Analytic approximations to the significance of the test statistics are derived to make the method fast applicable to long sequences.  The method is illustrated through the analysis of the Neuropixels data.


主讲人简介:

Hao Chen is an Associate Professor of Statistics at University of California, Davis.  Her current research interest lies in developing practical tools for understanding high-dimensional data and non-Euclidean data. She is the recipient of an NSF CAREER award.


电话:86-028-87352207                
地址:四川省成都市青羊区光华村街55号                
邮编:610074                
西南财经大学 数据科学与商业智能联合DB视讯(中国) 版权所有                
蜀ICP备05006386号